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Introduction

» The steepest descent method uses only first derivatives in
selecting a suitable search direction.

» Newton’s method (sometimes called Newton-Raphson method)
uses first and second derivatives and indeed performs better.

» Given a starting point, construct a quadratic approximation to
the objective function that matches the first and second
derivative values at that point. We then minimize the
approximate (quadratic function) instead of the original
objective function. The minimizer of the approximate function
IS used as the starting point in the next step and repeat the
procedure iteratively.
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Introduction

» We can obtain a quadratic approximation to the twice
continuously differentiable function: " — R using the
Taylor series expansion ¢f about the current pgint ,
neglecting terms of order three and higher.

fl) = f(2W) + (2 — M) g" + j(x — W) F(zW)(z — V) £ ¢(x)
Where, for simplicity, we use the notatighft = 7 f(x¥))
» Applying the FONC to; yields
0 =vq(x) = g™+ F(aV)(x — =) bap
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Example

» Use Newton’'s method to minimize the Powell function:
f(@y, @9, 23, 24) = (21 + 1029)* + 5(x3 — 24)* + (29 — 223)* + 10(21 — 24)*

Use as the starting poigt) = 3, —1,0, 1]*

iterations.

» Note thatf(z®) = 215

v/[f(x)

2+ 120(z1 — 24)
20
0

| —120(z1 — 14)*

. Perform three

. We have

[ 2(21 + 1022) + 40(z1 — 24)° |

20(z1 + 10x3) + 4(x9 — 223)°
10(393 — £U4) — 8(332 — 2333)3

_—10(5173 — 5174) — 40(.271 — 334)3_

20 0 —120(x1 — m4) ]
200 + 12(5172 — 25173)2 —24(5172 — 21133)2 0
—24(xzy — 223)* 10 + 48(zy — 2x3) —10
0 —10 10 4+ 120(xy — 4)?



Example
» |teration 1.
g% = [306, —114, —2, —310]"
482 20 0 —480] [ 0.1126  —0.0089 0.0154 0.1106 |

20 212 =24 0 —0.0089 0.0057 0.0008 —0.0087
(0)y = ON~1 —
F(a™) 0 =24 58 —10 F(a™) 0.0154  0.0008 0.0203 0.0155

480 0 —10 490 | | 0.1106 —0.0087 0.0155 0.1107

F(x")"1g") = [1.4127, —0.1587, 0.2540, 0.2540] "
) = 20 — F(20)"1g() = [1.5873, —0.1587,0.2540, 0.2540]"
f(xM) =31.8
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» Iteration 2. |
gV =1[94.81,—1.179, 2.371, —94.81]T
[ 215.3 20 0 —213.3]
20 2053 —10.67 0
(1)) —
F(a') 0 —10.67 3134 —10
2133 0 ~10  223.3 |

F(zW)"1g(D) =1[0.5291, —0.0529, 0.0846, 0.0846]”
) = 2 — F(xW)~1g(1) = [1.0582, —0.1058, 0.1694, 0.1694]"
f(x?) =6.28



Example T
» |teration 3.
g?) =128.09, —0.3475, 0.7031, —28.08]”
[ 96.80 20 0 —94.80]
20 2024 —4.744 0
(2)) —
F(z) 0 —4.744 1949 —10
9480 0 ~10  104.80 |
) = 2@ — F(x?)"1g® =1[0.7037, —0.0704, 0.1121, 0.1111]7

f(x®)) =124



Introduction

4

Observe that the th iteration of Newton’s method can be
written in two steps as

1. SolveF (" d® = —g®  fgf*
Step 1 requires the solution of arx » system of linear

equations. Thus, an efficient method for solving systems of
linear equations is essential when using Newton’s method.

As In the one-variable case, Newton’s method can be viewed as
a technique for iteratively solving the equation

g(xz)=0
wherexz ¢ r ang: R* — R* . In this case) IS the Jacobian
matrix ofg atr ;thatig(x) Isthen matrix whoesg
entry iIS(dg;/0x;)(x) i,j=1,2,...,n



Analysis of Newton’s Method

» As In the one-variable case there is no guarantee that Newton’s
algorithm heads in the direction of decreasing values of the
objective function if F(z*)) is not positive definite (recall
Figure 7.7)

» Even if F(z™) >0 , Newton’s method may not be a descent
method; that is, it is possible thate* 1)) > f(z®)

This may occur If our starting point is far awagrfr the solution

» Despite these drawbacks, Newton’s method has superior
convergence properties when the starting point is near the
solution.

Newton’s method works well if’(z) >0  everywhere.
However, if f/”(z) <0 for some , Newton’s method fiaal
to converge to the minimizer.



Analysis of Newton’s Method
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The convergence analysis of Newton’s method when is a
guadratic function is straightforward. Newton’s method reaches
the pointz* such thatf(=*) =0 In just one step starting from

any initial pointz© .
Suppose thapy = @7 is invertible afid) = 12" Qz — z="b
Then,g(z) = vf(x)=Qx —b amdz) = Q
Hence, given any initial point©® |, by Newton’s algorithm
1) — 0 _ F(:z:(‘)))—lg((’)
=z - Q7 '[Qz") — ]
—Q'b

:w*

» Therefore, for the quadratic case the order of convergence of

Newton’s algorithm issc  for any initial poigt?
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Analysis of Newton’s Method

» Theorem 9.1: Suppose that ¢3 and Rr" IS a point such
thatyf(z*) =0 an&(xz*) isinvertible. Then, foe:All
sufficiently close tax* , Newton’s method is well defined for all
k and converge ta* with an order of convergence at least 2.

» Proof: The Taylor series expansion of abolit yields
vix) - V(@) - Flz—z) = O(|z — 2|
Because by assumptione ¢? ane:*) IS invertible, there
exist constants >0 ¢, >0 and-0 such thatif
x € {x: ||z —z*| <€}, we have
|V f(x) = (@) = Flx - 20| < ¢z — 2|
and by Lemma 5.3p(z)~!  exists and satisfies
|F(z)7 < e
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Analysis of Newton’s Method

[Vf(@) - vfa?) - Flz—-2O)| <clz—2zO
|F ()| < c
» The first inequality holds because the remainder term in the

Taylor series expansion contains third derivativeg of that are
continuous and hence bounded gh: |z — z*|| < €}

» Suppose thagV € {z: ||z —z*|| <e} . Then, substituting:*
In the inequality above and using the assumptionsthiat*) = 0
we get

|F(V)(@ - 2*) - v f(aV)]| < alz” - 2|
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Analysis of Newton’s Method

» Subtractingz* from both sides of Newton’s algorithm and
taking norms yields
) —z*| = |2 — " — F(a)"" v f(=V)]
= [F(z®) " (F(z"))(@® - 2*) - v (V)]
< F@@)[[(Fz®) (@ —2) - 7 f(a®)]

» Applying the inequalities above involving the constants @and
et — & < erepfl2® — a7

» Suppose thag® is such that

|20 — || < = (0,1)
C1C9

Then

|z — 2| < ol — 2]
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Analysis of Newton’s Method

» By induction, we obtain

k+1)

|2t —2*|| < vyl — 2|7

k+1)

|2 — || < afla® — o]

Hence,lim;,_.||z® —2*[| =0  and therefore the seqyepce
converges ta* . The order of convergence is at least 2 because
|2 — 2| < cro0]|2™ — 2%, That is,||z® ) — z*|| = O(||z™ — z*||?
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Analysis of Newton’s Method

» Theorem 9.2: Lefx,} be the sequence generated by Newton’s

method for minimizing a given objective functiginz) . If the
Hessianp(z®) >0 anglt) = ) #£0 , then the search
direction

d¥) = —F(z0)"1gk) = glk+1) _ zH

from z* toz*+U is a descent directionfor in the sense that
there exists am >0  such that for alt (0, o)

f@® +ad) < f(zt
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Analysis of Newton’s Method

» Proof: Lety(a) = f( +ad®) , then using the chain rule, we
obtain ¢'(a) = Vf(w(k) 4 Ozd(k))Tde)

Hence, ¢/(0) = vf(z®)"d" = —g"F(x®) g™ <0

becauseF(z*)' >0 ag@ £0 .
Thus, there exists am>0  so that foraadl (0,a) é(a),< ¢(0)
This implies that for allv € (0, &)

f(a:(’“) 4+ Ozd<k>) < f(w(’f)]
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Analysis of Newton’s Method

4

Theorem 9.2 motivates the following modification of Newton’s
method
) = ) _ o) F(20)"1g(k)
where o), = argmingsq f(x® — aF(x®)~1g*)
that is, at each iteration, we perform a line search in the
direction — F(z*))~1g*)
A drawback of Newton’s method is that evaluationFok*)
for largen can be computationally expensive. Furthermore, we

have to solve the set of linear equatiatis®)d* = —g* .In
Chapters 10 and 11 we discuss this issue.

The Hessian matrix may not be positive definite. In the next we
describe a simple modification to overcome this problem.
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Levenberg-Marquardt Modification

» If the Hessian matri¢(z®)) is not positive definite, then the
search directioni®) = —F(z*))-1g*)  may not point in a descent
direction.

» Levenberg-Marquardt modification:

20 = 2 — (F@W) + D) 'g® >0

» Consider a symmetric matrix , which may not be positive

definite. Let \;,...,)\, be the eigenvaluesof  with

corresponding eigenvectoss, ..., v, . The eigenvalues are real,
but may not all be positive.
» Consider the matrbG = F+p1 , where 0 . Note that the

eigenvalues otz ar® +pu,...,\, +u
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Levenberg-Marquardt Modification

» Indeed, Gv; = (F + ul)v,
= Fv, + ulv;
= Aiv; + pv;
= (N + p)v;
which shows that forall=1,...n w, IS also an eigenvectar of

with eigenvalue\; + ;

» If 4 1s sufficiently large, then all the eigenvalues@f  are
positive andG is positive definite.

» Accordingly, if the parameter, in the Levenberg-Marquardt
modification of Newton’s algorithm is sufficiently large, then
the search directiog® = —(F(z™®) + p,.1)"'g® always points
In a descent direction.
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Levenberg-Marquardt Modification

» If we further introduce a step sizg
) =2 — qp (F(a™)) + 1)~ 1g®
then we are guaranteed that the descent property holds.

» By letting i, — 0 , the Levenberg-Marquardt modification
approaches the behavior of the pure Newton’s method.

» By letting 1, — oo , this algorithm approaches a pure gradient
method with small step size.

» In practice, we may start with a small valuegf  and increase
it slowly until we find that the iteration is desceft:"*") < f(x*)
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Newton’s Method for Nonlinear Least Squares

» Consider minimize Y7 (ri(z))? ,whefer" - R i=1,..,m
are given functions. This particular problem is called a
nonlinear least-sguares problem.

» Suppose that we are given measurements of a process at
points in time. Lett,....t,, denote the measurement times and
u1, - Ym the measurements values. Note that 0 tanrdL0
We wish to fit §ssinusoid to the measurement data.

2..
1.5}
L
LR

asf | @} §

N :
o—

Measurement

-0.51

o

-1F - o A
-1.5F

-2+
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Newton’s Method for Nonlinear Least Squares

» The equation of the sinusoid is
y = Asin(wt + ¢)
with appropriate choices of the parametars, ¢
» To formulate the data-fitting problem, we construct the
objective function
> (yi — Asin(wt; + ¢))°
representing the sum of the squared errors between the
measurement values and the function values at the
corresponding points in time.

» Let z =[4,w,¢]7 representthe vector of decision variables. We
obtain the least-squares problem with
ri(x) =y; — Asin(wt; + ¢
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Newton’s Method for Nonlinear Least Squares

» Defining r = [r,...,r,,]7 , we write the objective function as
f(x) = r(z)"r(x). TO apply Newton’s method, we need to
compute the gradient and the Hessian of

» The; th componengo@f(a:) 1S ;
(VI@); = o) = 25 ) o (@

» Denote the Jacobian matrix of by 7

Gil@) o G

dury 9,
J(x) = s s
Yala) - ()

k1 n

» Thus, the gradient of can be represented as
vf(z)=2J(z) r(z)

23



Newton’s Method for Nonlinear Least Squares

» We compute the Hessian matrix pf . The)) th component
of the Hessian is given by
0
()

02 f
3xk8x](w) 0x (8:13]
5 (2T e 5 @)

— 25 (S @) @) + ) (a)

» Letting S(z) be the matrné whose j) th component is
m Tz
Zizl Tl(w)a k@$7 (33)

» We write the Hessian matrix as
F(x)=2(J(x) J(x)+ S(x))

24



Newton’s Method for Nonlinear Least Squares

» Therefore, Newton’s method applied to the nonlinear least-
squares problem is given by

D) = 2 — (J(2) T (z) + S(x)) ' J () 'r(x

/

» In some applications, the matr§{x) iInvolving the second
derivatives of the function can be ignored because its
components are negligibly small.

» In this case Newton’s algorithm reduces to what is commonly
called theGauss-Newton method:
) = 2®) — (J(2)T T ()" T (2)Tr(x)
Note that the Gauss-Newton method does not require
calculation of the second derivatives of
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Example

ri(x) =y, — Asin(wt +¢)  i=1,...,21

» The Jacobian matrix(z'  in this problem igia 3 matrix
with elements given by
(J(w))(m) = — sm(wt + QS)
(J(a:))(% 9) = —1i A cos(wt; + ¢) 1=1,...,21
(J(CB))(Z’ 3) = —A cos(wt + d)>

» We apply the Gauss-Newton algorlthm to flnd the smusmd of
best fit. 1

1.8 /+

» The parameters of this sinusoida "y
A =201,w=0.992,¢ = 0.541 §

0
g—ﬂﬁj
1k

-1.5r

2t
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Newton’s Method for Nonlinear Least Squares

» A potential problem with the Gauss-Newton method is that the
matrix j(z)"J(z) may not be positive definite.
» This problem can be overcome using a Levenberg-Marquardt
modification:
) = %) — (J(2)T T () + )" T (2) ()

» This is referred to in the literature as theenberg-Marquardt
algorithm because the original modification was developed
specifically for the nonlinear least-squares problem.

» An alternative interpretation of the Levenberg-Marquardt
algorithm is to view the term,I  as an approximatios(te
In the Newton’s algorithm.
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